3.8.60 \(\int \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2} \, dx\) [760]

Optimal. Leaf size=144 \[ \frac {2 \sqrt [4]{-1} a^{3/2} \text {ArcTan}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d} \]

[Out]

2*(-1)^(1/4)*a^(3/2)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan
(d*x+c)^(1/2)/d+(2-2*I)*a^(3/2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*cot(d*x+c)^(1
/2)*tan(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {4326, 3636, 3625, 211, 3680, 65, 223, 209} \begin {gather*} \frac {2 \sqrt [4]{-1} a^{3/2} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \text {ArcTan}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(2-2 i) a^{3/2} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(2*(-1)^(1/4)*a^(3/2)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c +
d*x]]*Sqrt[Tan[c + d*x]])/d + ((2 - 2*I)*a^(3/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan
[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3636

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dis
t[2*a, Int[Sqrt[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]], x], x] + Dist[b/a, Int[(b + a*Tan[e + f*x])*(Sqr
t[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &
& EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 4326

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps

\begin {align*} \int \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2} \, dx &=\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {(a+i a \tan (c+d x))^{3/2}}{\sqrt {\tan (c+d x)}} \, dx\\ &=\left (i \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)} (i a+a \tan (c+d x))}{\sqrt {\tan (c+d x)}} \, dx+\left (2 a \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\\ &=-\frac {\left (a^2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}-\frac {\left (4 i a^3 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac {(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {\left (2 a^2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}\\ &=\frac {(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {\left (2 a^2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac {2 \sqrt [4]{-1} a^{3/2} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.63, size = 255, normalized size = 1.77 \begin {gather*} -\frac {i a e^{-i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {\frac {i \left (1+e^{2 i (c+d x)}\right )}{-1+e^{2 i (c+d x)}}} \left (8 \log \left (e^{i (c+d x)}+\sqrt {-1+e^{2 i (c+d x)}}\right )+\sqrt {2} \left (-\log \left (1-3 e^{2 i (c+d x)}-2 \sqrt {2} e^{i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}}\right )+\log \left (1-3 e^{2 i (c+d x)}+2 \sqrt {2} e^{i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}}\right )\right )\right )}{2 \sqrt {2} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((-1/2*I)*a*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[(I*(1
+ E^((2*I)*(c + d*x))))/(-1 + E^((2*I)*(c + d*x)))]*(8*Log[E^(I*(c + d*x)) + Sqrt[-1 + E^((2*I)*(c + d*x))]] +
 Sqrt[2]*(-Log[1 - 3*E^((2*I)*(c + d*x)) - 2*Sqrt[2]*E^(I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]] + Log[1 -
 3*E^((2*I)*(c + d*x)) + 2*Sqrt[2]*E^(I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]])))/(Sqrt[2]*d*E^(I*(c + d*x
)))

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 570 vs. \(2 (114 ) = 228\).
time = 44.90, size = 571, normalized size = 3.97

method result size
default \(-\frac {\sqrt {\frac {\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right ) \left (i \sqrt {2}\, \ln \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-1\right )-2 i \sqrt {2}\, \arctan \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\right )-i \sqrt {2}\, \ln \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}+1\right )-\sqrt {2}\, \ln \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-1\right )-2 \sqrt {2}\, \arctan \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\right )+\sqrt {2}\, \ln \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}+1\right )+2 i \ln \left (-\frac {\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\, \sin \left (d x +c \right )+\sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\, \sin \left (d x +c \right )-\sin \left (d x +c \right )-\cos \left (d x +c \right )+1}\right )+4 i \arctan \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}+1\right )+4 i \arctan \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}-1\right )+4 \arctan \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}+1\right )+4 \arctan \left (\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}-1\right )+2 \ln \left (-\frac {\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\, \sin \left (d x +c \right )-\sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {2}\, \sin \left (d x +c \right )+\sin \left (d x +c \right )+\cos \left (d x +c \right )-1}\right )\right ) \sqrt {2}\, a}{2 d \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )-1\right ) \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}}\) \(571\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/d*(cos(d*x+c)/sin(d*x+c))^(1/2)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(I*2^(1/2)
*ln(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-1)-2*I*2^(1/2)*arctan(((-1+cos(d*x+c))/sin(d*x+c))^(1/2))-I*2^(1/2)*ln(
((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+1)-2^(1/2)*ln(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-1)-2*2^(1/2)*arctan(((-1+c
os(d*x+c))/sin(d*x+c))^(1/2))+2^(1/2)*ln(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+1)+2*I*ln(-(((-1+cos(d*x+c))/sin(d
*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+sin(d*x+c)+cos(d*x+c)-1)/(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c
)-sin(d*x+c)-cos(d*x+c)+1))+4*I*arctan(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)+1)+4*I*arctan(((-1+cos(d*x+c
))/sin(d*x+c))^(1/2)*2^(1/2)-1)+4*arctan(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)+1)+4*arctan(((-1+cos(d*x+c
))/sin(d*x+c))^(1/2)*2^(1/2)-1)+2*ln(-(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-sin(d*x+c)-cos(d*
x+c)+1)/(((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+sin(d*x+c)+cos(d*x+c)-1)))/(I*sin(d*x+c)+cos(d*
x+c)-1)/((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*2^(1/2)*a

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((I*a*tan(d*x + c) + a)^(3/2)*sqrt(cot(d*x + c)), x)

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 491 vs. \(2 (108) = 216\).
time = 0.94, size = 491, normalized size = 3.41 \begin {gather*} -\frac {1}{4} \, \sqrt {-\frac {4 i \, a^{3}}{d^{2}}} \log \left (-16 \, {\left (\sqrt {2} {\left (d e^{\left (3 i \, d x + 3 i \, c\right )} - d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {4 i \, a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} + 3 \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - a^{2}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right ) + \frac {1}{4} \, \sqrt {-\frac {4 i \, a^{3}}{d^{2}}} \log \left (16 \, {\left (\sqrt {2} {\left (d e^{\left (3 i \, d x + 3 i \, c\right )} - d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {-\frac {4 i \, a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} - 3 \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right ) + \frac {1}{4} \, \sqrt {-\frac {32 i \, a^{3}}{d^{2}}} \log \left (\frac {{\left (\sqrt {2} {\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt {-\frac {32 i \, a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} + 8 i \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a}\right ) - \frac {1}{4} \, \sqrt {-\frac {32 i \, a^{3}}{d^{2}}} \log \left (\frac {{\left (\sqrt {2} {\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt {-\frac {32 i \, a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} + 8 i \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/4*sqrt(-4*I*a^3/d^2)*log(-16*(sqrt(2)*(d*e^(3*I*d*x + 3*I*c) - d*e^(I*d*x + I*c))*sqrt(-4*I*a^3/d^2)*sqrt(a
/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)) + 3*a^2*e^(2*I*d*x + 2
*I*c) - a^2)*e^(-2*I*d*x - 2*I*c)) + 1/4*sqrt(-4*I*a^3/d^2)*log(16*(sqrt(2)*(d*e^(3*I*d*x + 3*I*c) - d*e^(I*d*
x + I*c))*sqrt(-4*I*a^3/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x +
2*I*c) - 1)) - 3*a^2*e^(2*I*d*x + 2*I*c) + a^2)*e^(-2*I*d*x - 2*I*c)) + 1/4*sqrt(-32*I*a^3/d^2)*log(1/2*(sqrt(
2)*(I*d*e^(2*I*d*x + 2*I*c) - I*d)*sqrt(-32*I*a^3/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x +
2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)) + 8*I*a^2*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a) - 1/4*sqrt(-32*I*a^3/d^2
)*log(1/2*(sqrt(2)*(-I*d*e^(2*I*d*x + 2*I*c) + I*d)*sqrt(-32*I*a^3/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt
((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)) + 8*I*a^2*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}} \sqrt {\cot {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(1/2)*(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral((I*a*(tan(c + d*x) - I))**(3/2)*sqrt(cot(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(3/2)*sqrt(cot(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \sqrt {\mathrm {cot}\left (c+d\,x\right )}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^(1/2)*(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

int(cot(c + d*x)^(1/2)*(a + a*tan(c + d*x)*1i)^(3/2), x)

________________________________________________________________________________________